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This document details the modelling work on activation dependent stiffness
undertaken for the associated paper.

Basic approach

To examine how changes in muscle activation contribute to joint stiffness
we: (a) built a simple model of the musculoskeletal system, (b) held the
activation of the muscle constant at different levels, (c) applied perturbations
and, (d) observed what effect the different levels of muscle activation had on
the induced kinematics.

Specification of the model

The examined system is a single segment with a revolute joint controlled by
a single lumped muscle (Supplemental Figure 1). The single joint - which
is made to emulate the elbow joint in the related experiments - is simulated
as a rigid segment with an inertia of I = 0.07 kilograms·metres2, similar to
that of the human forearm and hand taken together [8]. The dynamics for
the single joint are thus given by the equation:

θ̈ =
τ(t)

I
(1)

where, θ̈, is the angular acceleration of the joint and, τ(t), is the total torque
applied at the joint at time, t. The total torque, τ(t), is net of the three
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Figure 1: A schematic of the system used for the simulations described in this
document. A single joint arm is controlled by a single flexor muscle (in red). The
angular position of the joint, θ, is measured in radians from the horizontal dashed
line. The motor command, u(t) drives the muscle which acts on the arm with
torque, τm(t).

contributing torques as given by:

τ(t) = τm(t) + τbias(t) + τpert(t) (2)

where, τm, is the torque produced by the muscle, τbias, is the background
load and, τpert, is the contribution from the perturbation applied to the joint
during the trial. The joint angle, θ, and velocity, θ̇, evolve according to the
following equation:

d

dt

(
θ

θ̇

)
=

(
θ̇

θ̈

)
(3)

In practice, simple Euler integration with, Δt = 0.005 seconds, is used to
solve this equation through time. The joint is driven by a single monoar-
ticular lumped flexor muscle with a physiological cross-sectional area of,
PCSA = 23 centimetres2 [5] (18 centimetres2 from the monoarticulars and 5
centimetres2 from the biarticulars). The maximum force production for the
muscle is taken to be 31.8 Newton/centimetres2 [7]. The moment arm of the
muscle is taken as, M = 0.04 metres [6, 5], and the optimal muscle length
L0, occurs at the joint angle π

2
.
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The muscle model was composed of three discernable components: a force-
length curve, a force-velocity curve, and a component which models the de-
pendence of force on length and activation together [1]. The model is a pared
back version of the Virtual Muscle published by Cheng et al. (2000). The
unitless tension, T, which is produced via the product of the three modelled
components, is given by the equation:

T(FL(L), FV(V, L), Af(a, Leff)) = FL(L) · FV(V, L) ·Af(a, Leff) (4)

The unitless tension from the above equation is then used to calculate the
torque generated by the muscle, τm, according to the following equation:

τm(t) = M · T(FL(L), FV(V, L), Af(a, Leff)) · PCSA · 31.8 (5)

where, M , is the moment arm for the muscle; L, Leff , and V are the length,
effective length, and velocity of the muscle in units of L0, L0, and L0/second
respectively; and finally, a, is the activation of the muscle in units of f0.5.
The dependence of force on the length of the muscle (in normalized units of
L0) is given by the equation [1]:

FL(L) = exp

(
−abs

(
(Lβ − 1)

ω

)ρ)
(6)

The dependence of force on the length and velocity of the muscle (in nor-
malized units of L0 and L0/second respectively) is given by the equation
[1]:

FV(V, L) =

⎧⎪⎪⎨
⎪⎪⎩

Vmax − V

Vmax + (cV 0 + cV 1L)V
, V ≤ 0

bV − (aV 0 + aV 1L + aV 2L
2)V

bV + V
, V > 0

(7)

The dependence of the muscle force on muscle activation, a, and the effective
length of the muscle, Leff , is captured by the following equations [1]:

Af(a, Leff) = 1− exp

[
−

(
a

afnf

)nf
]

(8)

nf = nf0 + nf1

(
1

Leff

− 1

)
(9)
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The effective length of the muscle, which acts like a low-pass filter of the
actual muscle length, evolves according to the differential equation [1]:

L̇eff(L, Af) =
[L− Leff ]3

TL (1− Af)
(10)

Since, the effective length is a low pass filtered version of the actual muscle
length, the stiffness like properties induced by equation 8 will tend to enter
slowly after a perturbation. It should be noted that, even if the actual
length is used in place of the effective length, the results described here are
not significantly effected.
Muscle activation, a (in units of f0.5), is generated by passing the neural
command, u, through a filter which approximates calcium dynamics [2, 5].
Here, we used the simplified version of this filter employed by Li and Todorov
(2005).

ȧ =
u(t)

τcalcium(u, a)
(11)

where,

τcalcium(u, a) =

{
τdeact + u(t)(τdeact − τact), u > a

τdeact, u ≤ a
(12)

Constants used to parameterize the muscle property equations are given in
the following table and are based on those used in [1, 5].

4



Parameter Parameter Value

β 1.55
ω 0.81
ρ 2.12

Vmax -7.39
aV 0 -3.12
aV 1 4.21
aV 2 -2.67
bV 0.62
cV 0 -3.21
cV 1 4.17
af 0.56
nf0 2.11
nf1 3.31
TL 0.088
τact 0.05

τdeact 0.066

The sequence of events for a single ‘trial’

Each ‘trial’ is similar to the corresponding experimental work. The sequence
of events for each trial runs as follows:

1. A PID control law is used to move the arm to the same position, θ = π
2
,

for each trial.

2. A hand picked muscle stimulus frequency is kept constant throughout
the trial. The muscle stimulus frequency, u(t) = C, is chosen so that
when the PID control law stabalizes the joint it has to use either 1,
2, or 3 Newton·metres of force to maintain the posture. These are the
background loads as described in the accompanying paper (i.e. the PID
control law was outputing -1, -2, or -3 Newton·metres respectively).

3. The PID control is given enough time to stabilize the joint position.
Then, its output is held constant for the remainder of the trial; i.e. it’s
output is clamped and plays the roll of the background load for the
remainder of the trial.
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4. Step perturbations are added in on top of the constant background load.
The perturbation, depending on the trial, is -1.25 or -2.5 Newton·metres.
Since there are two perturbations, and three background load, there are
2× 3 = 6 different trials. Perturbations are held on for 2 seconds, but
we are only really interested in the first 250ms of movement.

Simulation code

These simulations were written in the Matlab Language (written in Ver-
sion 7.6.0, R2008a). The mfiles for the simulations can be found online
with the rest of the supplementary material for the associated paper. The
following files are required to reproduce the simulations: mainscript.m,

stiffness.m, muscleinit.m, muscleconfig.m, muscleconfigscript.m,

muscleconfig userdef.m, muscleforwardeff.m, pidcontrol.m. To re-
produce the simulations, make sure that all of these files are in your Matlab
path and then run mainscript.m.
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